Congenital Hypopituitarism

Jennifer Miller
Pediatric Endocrinology
Outline

• Anatomy of the Hypothalamus and Pituitary
• Anterior Pituitary Development
• Congenital Hypopituitarism
 • Etiology
 • Presentation
 • Diagnosis
 • Treatment
Hypothalamus

Controls the release of 8 major hormones by the hypophysis and is involved in:
1. Temperature regulation
2. Control of food and water intake
3. Sexual behavior and reproduction
4. Control of daily cycles in the physiological state and behavior
5. Mediation of emotional responses

“Biological Clock”
Projection from retina to suprachiasmatic nucleus
Day-night information
Synchronizes diurnal or circadian rhythms
Hypothalamus

Consists of large number of nuclei and fiber tracts

Supraoptic and paraventricular nuclei - AVP, Oxytocin
 • AVP and Oxytocin are transported down the nerve axons through infundibulum to the neurohypophysis

Arcuate Nucleus and others - releasing or inhibiting factors
 • Secreted from terminals of these neurons enter portal system of vessels and carried to the adenohypophysis
Hormones secreted by the hypothalamus

- **Anti-diuretic hormone (ADH):** increases water absorption into the blood by the kidneys.
- **Corticotropin-releasing hormone (CRH):** CRH stimulates release of ACTH from anterior pituitary -> adrenal glands to release corticosteroids -> regulate metabolism and immune response.
- **Gonadotropin-releasing hormone (GnRH):** GnRH stimulates the anterior pituitary to release follicle stimulating hormone (FSH) and luteinizing hormone (LH) -> normal functioning of the ovaries and testes.
- **Growth hormone-releasing hormone (GHRH) or growth hormone-inhibiting hormone (GHIH) (also known as somatostatin):** GHRH -> anterior pituitary release of growth hormone (GH); GHIH has the opposite effect. GH maintains healthy body composition (muscle/fat mass) and growth.
- **Oxytocin:** role in orgasm, the ability to trust, body temperature, sleep cycles, and the release of breast milk.
- **Prolactin-releasing hormone (PRH) or prolactin-inhibiting hormone (PIH) (also known as dopamine):** PRH -> anterior pituitary to stimulate breast milk production via prolactin. PIH inhibits prolactin, and thereby, milk production.
- **Thyrotropin releasing hormone (TRH):** TRH -> thyroid stimulating hormone (TSH) -> stimulates release of thyroid hormones -> regulate metabolism, energy, and growth and development.
Pituitary

Size of a pea - approx 0.5 grams
Located - sella turcica at base of hypothalamus
Composed of 2 functionally distinct structures
 Adenohypophysis (anterior pituitary)
 Neurohypophysis (posterior pituitary)
Differ in embryologic development and anatomy
Anatomy of Pituitary

Two components:

- Adenohypophysis receives signals through portal system of blood vessels from hypothalamus and through stalk)
- Neurohypophysis (receives signal through axons that arise in neural bodies in hypothalamus and also traverse down stalk)
Physiology of Pituitary Development

Anterior
Up-growth of ectodermal cells from Rathke’s pouch

Posterior
Down-growth of neural tissue cells from the hypothalamus
Physiology of Pituitary Development

Dual embryonic origin:

ORAL ECTODERM

&

NEUROECTODERM

Two key concepts are TEMPORAL and SPATIAL relationships.
Anterior Lobe of Pituitary

Signaling molecules & Transcription factors

5 Different Cell Types

6 Hormones

Somatotropes
Thyrotropes
Corticotropes
Gonadotropes
Lactotropes

HESX1
PROP1
POU1F1
Lhx3
Lhx4
TBx19
SOX3
SOX2

GH
TSH
ACTH
LH
FSH
Prl
Five cell types of anterior pituitary

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Cell Type</th>
<th>Hormone(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-20%</td>
<td>Corticotrophs</td>
<td>POMC -> ACTH</td>
</tr>
<tr>
<td>40-50%</td>
<td>Somatotrophs</td>
<td>GH</td>
</tr>
<tr>
<td>10-20%</td>
<td>Lactotrophs</td>
<td>PRL</td>
</tr>
<tr>
<td>10-15%</td>
<td>Gonadotrophs</td>
<td>LH/FSH</td>
</tr>
<tr>
<td>3-5%</td>
<td>Thyrotrophs</td>
<td>TSH</td>
</tr>
</tbody>
</table>

% pituitary cell population
3 stages of anterior pituitary development

1. Induction of pituitary placode - thickened plate of ectoderm
2. Formation of Rathke’s pouch - the primordium of the anterior pituitary which undergoes cell proliferation and determination
3. Terminal differentiation of 6 hormone secreting lineages
Regulation of the development of the anterior pituitary gland by transcription factors. Following, inductive signals between the developing diencephalon and the oral ectoderm, early transcription factors guide the formation of rudimentary Rathke's Pouch (rRP) and then subsequent gene regulatory pathways control the determination, proliferation, and differentiation events that establish the specialized hormone-secreting cells.
Induction of pituitary placode
Physiology of anterior pituitary development

Evagination of oral ectoderm – induced by ventral diencephalon

- BMP4 - required for organ commitment of ant pit gland
- FGF8 - opposes BMP2 and is essential for cell survival

Rudimentary Rathke’s pouch produces signaling proteins

- BMP2 - provides ventralizing cue
- WNT4 - cellular proliferation

Antagonistic relationship between signals
Expansion of Rathke’s pouch begins with cellular proliferation induced by **early transcription factors:** PITX1, PITX2, LHX3, LHX4, **HESX1**, SIX6
HESX1 - paired-like class of homeodomain transcription factor

REPRESSOR and acts by recruiting co-repressors
Mechanism for temporal organization - eg. HSX1 and PROP1
HSX1 heterodimerizes with PROP1 - inhibits gene activation properties
Disorder of HSX1

Recessive or dominant inheritance
Important for development of optic nerve
Clinical manifestation:
 Anterior pituitary hypoplasia/ectopic post pituitary/absent infundibulum
 Absent corpus callosum

What d/o does this sound like?
 SOD
LHX3 is essential for proliferation and differentiation of almost all pituitary cells except corticotropes.
Disorder of Lhx3

Recessive inheritance
Lhx3 mutations cause
deficiency in GH, PRL, TSH, LH, FSH
Rigid cervical spine
Hypo or hyperplastic anterior pituitary
Disorders of PROP1

Recessive inheritance
PROP1 mutations cause failure of initial proliferation
 PIT1 dependent cell types
 Gonadotropins
Limited elbow extensibility, blue sclera, large sella turcica
MRI can show hyperplastic anterior pituitary - pseudotumor
(absence of PROP1 results in unopposed persistence of HESX1 expression which is involved in initial exponential proliferation)
Terminal lineage differentiation

More specific transcription factors are responsible for terminal cell type differentiation
POUF1domain protein

1. Directly controls regulatory genes
 - Required for terminal differentiation of:
 - Somatotrope
 - Lactotrope
 - Thyrotrope

2. Protects from programmed cell death
 - Inactivation of POUF1 from a dominant negative mutation leads to decreased growth rate and cell death
 - Hypoplasia of the gland
POUF1 domain protein

Model - transition from positional identity to cell-autonomous commitment
Spatial interaction - targeted expression of PIT1 ventrally can convert gonadotropes to thyrotropes - dorsal expression of GATA2 can convert all PIT1-dependent cells to gonadotropes
Terminal lineage differentiation

Tbx19 - T box transcription factor
Specific to corticotrope lineage
Activate POMC promoter
Hypopituitarism

Lack of one or more pituitary hormones leading to a loss of function in the gland or organ controlled by that hormone.
Anterior Pituitary Hormones

- **Growth Hormone** - stimulates growth of tissues and bone; lipolysis
- **ACTH** - Stimulates the adrenal gland to release cortisol to maintain blood pressure and blood sugar
- **LH/FSH** - controls sexual function and fertility
- **TSH** - Stimulates thyroid gland to release thyroid hormone
- **Prolactin** - stimulates female breast development and milk production
Growth Hormone

- Secretion
 - GH-releasing factor
- Inhibition
 - Somatostatin
- Stimulates most body cells to increase in size and divide
- Major targets are bone and skeletal muscle
- Promotes protein synthesis
- Encourages use of fats for fuel thus conserving glucose
- Most effects are mediated either directly or indirectly by IGFs
GH deficiency

• In children -> slowing or lack of growth and an increase in body fat
• Infants with GH deficiency are NOT born SGA. They are normal weight and length at birth.
• In childhood hypopituitarism, GH is the most commonly affected
• Incidence rate of 1:3500 in US
 47% due to tumors (craniopharyngioma)
 15% CNS malformation
 14% SOD
Radiation, leukemia, trauma, histiocytosis and CNS infection
Hypothalamic Pituitary Thyroid Axis

- Hypothalamus senses low T3 & T4 and releases TRH
- Anterior pituitary releases TSH & prolactin
- Thyroid makes T3 & T4
TSH

Secretion
- TRH

Inhibition
- Thyroid Hormone

Actions
- Increases iodide uptake, thyroglobulin and thyroid hormone synthesis

Deficiency is a cause of congenital hypothyroidism
ACTH

Secretion
- CRF from hypothalamus
- Pro-opiomelanocortin (POMC)
 - ACTH
 - Endorphins
 - Melanocyte stimulating hormones

Inhibition
- Cortisol from adrenals
- Prolonged steroid use

Infants do not establish a diurnal pattern of cortisol release until 6 months of age.
Hypothalamic Pituitary Adrenal Axis

- Hypothalamus senses low cortisol or threat to homeostasis
- Releases CRH
- Ant pituitary releases ACTH
- Adrenal gland makes cortisol
- Cortisol → negative feedback loop on pituitary and hypothalamus
- ADH also causes release of ACTH
Symptoms include weakness, fatigue, weight loss, abdominal pain, hypotension, hypoglycemia and hyponatremia (with normokalemia) - unlike CAH because mineralocorticoid function regulated by the RAS. Hyponatremia in adrenal insufficiency is due to inappropriate increase in vasopressin secretion/action (cortisol Nly exerts tonic inhibitory effect on vasopressin secretion) and inability to excrete free water.

• Severe stress - infection or surgery - precipitate adrenal crisis, coma and death.
Isolated ACTH Deficiency

Adrenal insufficiency: hypoglycemia, cholestasis, and hyponatremia
Hypopigmentation with red hair
Early onset morbid obesity
Gonadotropins

- Secretion
 GnRH
 Hypothalamus sends pulses
 Increases during puberty

- Inhibition
 Inhibin

FSH
 Spermatogenesis
 Follicular maturation

LH
 Testosterone
 Estradiol
Hypothalamic Pituitary Gonadal Axis

- Hypothalamus senses low sex hormones
- Releases GnRH
- Ant pituitary releases LH & FSH → estrogen & testosterone production
- Gonads produce inhibin → neg feedback
- Pituitary produces follistatin, which inhibits activin → neg feedback
Prolactin

- Most important regulator is dopamine which acts on D2 receptors of lactotrophs causing INHIBITION of prolactin secretion
- TRH has a stimulatory effect on prolactin release
- Prolactin suppresses GnRH secretion

Hyperprolactinemia
 - Galactorrhea
 - Pituitary adenomas

Medications that can cause hyperprolactinemia
 - Neuroleptics, antipsychotics, estrogens and anti-hypertensives
Hormones of Posterior Pituitary

- Paraventricular nucleus and supraoptic nucleus produces:
 - **Oxytocin** - uterine contraction, lactation
 - **Vasopressin** - water reabsorption from distal and collecting tubule of kidney; concentrate urine.
Vasopressin (AVP or ADH)

Released in response to increased osmotic pressure in the blood

Water balance

- Increased reabsorption of water in collecting ducts of kidneys
- Arteriolar vasoconstriction - HTN
- Increased thirst

Overproduction

- Head trauma, brain tumors, encephalitis, pneumonia
- SIADH
 - HA, apathy, nausea, vomiting, impaired consciousness
 - Decreased plasma osmolarity

Underproduction

- Central Diabetes Insipidus (DI)
 - Pituitary tumors, head trauma, infiltrative diseases, autoimmune or surgical
 - Increased plasma osmolarity
Posterior Pituitary

Oxytocin

- Stimulates the smooth muscle of the uterus to contract, inducing labor.
- Stimulates the myoepithelial cells of the breasts to contract which releases milk from breasts when nursing.
- Stimulates maternal behavior.
- In males it stimulates muscle contractions in the prostate gland to release semen during sexual activity.
Clinical Presentation of Congenital Hypopituitarism
Congenital Hypopituitarism

- Manifestations that suggest congenital anterior hypopituitarism include midline defects, micropenis, optic atrophy, hypoglycemia, and poor growth.
- Can occur from birth trauma, asphyxia, part of a number of midline defects, or due to a genetic mutation involving the anatomic development of the pituitary gland.
Congenital Hypopituitarism: Midline Defects

• Most common midline defect is septo-optic dysplasia.
• This disorder includes absence of the septum pellucidum in 50% of cases and underdevelopment of the optic nerves, associated with variable degrees of reduced vision ranging from mild loss to complete blindness.
• Affected children may present with nystagmus.
• For any child noted to have optic nerve hypoplasia, at least a one-time referral to a pediatric endocrinologist is warranted, especially if there is any associated growth delay.
• Other midline associations with hypopituitarism include the presence of a fused deciduous upper central maxillary incisor cleft lip and/or palate, choanal atresia, anomalous and/or absent vascular supply to the central nervous system, and encephaloceles.
One of the earliest known transcription factor genes involved in embryogenesis of the pituitary gland is Rathke's pouch homeobox, (called HESX1), mutations of which have been found in a few cases of septo-optic dysplasia.

Other early transcription factor genes important in the formation of various pituitary cell populations are LHX3, LHX4, and PROP-1 (Prophet of Pit-1), and PIT-1/POUF1. Mutations of LHX3 are associated with deficiencies of all anterior pituitary hormones ACTH along with a rigid cervical spine leading to limited head rotation,

PROP-1 mutations are associated with deficiencies of GH, prolactin, TSH, and sometimes gonadotropins and ACTH, limited elbow extensibility, blue sclerae, and, a large sella turcica in some

PIT-1/POUF1 is a pituitary-specific transcription factor that is necessary for the development of somatotroph, lactotroph, and thyrothroph lineages, so mutations of PIT-1 are associated with deficiencies of GH, prolactin, and TSH.
Congenital Hypopituitarism
Septo-Optic Dysplasia/Optic Nerve Hypoplasia

Triad of:
- Hypoplastic optic disk with characteristic double margin
- Absent septum pellucidum and corpus callosum
- Pituitary hormone abnormality - most commonly GHD

Highly variable phenotype
- 60% have isolated hypopituitarism
- 30% have all 3 manifestations
Due to underdevelopment of the optic nerves.
Variable degrees of reduced vision ranging from mild loss to complete blindness.
Affected children may present with nystagmus.
Any child noted to have optic nerve hypoplasia, a one-time referral to a pediatric endocrinologist is warranted, especially if there is any associated growth delay.
Neonates with nystagmus must have pituitary function evaluated.
Most common symptom is hypoglycemia due to GH deficiency with or without ACTH deficiency
Cortisol and GH are counter-regulatory hormones that protect against hypoglycemia
Without one or both, insulin acts in an unopposed fashion
In any term infant who develops hypoglycemia with no underlying risk factor (such as prematurity, intrauterine growth retardation, infant of a diabetic mother, etc), the diagnosis of hypopituitarism must be considered.
Symptoms of Congenital Hypopituitarism

Severe cortisol deficiency may result in presentation with hyponatremia (as cortisol is necessary for the action of ADH to facilitate the excretion of free water by the kidneys) and/or outright shock due to its effects on blood pressure maintenance. If DI were present, shock with hypernatremia would manifest.
Considerations for Congenital Hypopituitarism

- Some children with congenital hypopituitarism develop a unique, noninfectious form of hepatitis. The condition is suspected if there is liver enlargement and abnormal liver function tests (predominantly indicating cholestasis) and is confirmed by the presence of characteristic giant-cell transformation of hepatocytes as seen on biopsy.
- The exact cause of this giant-cell hepatitis is unknown, and the condition usually remits on its own over the first few months of life without any permanent damage to the liver.
Diagnosis of hypopituitarism

• Clinical indications for evaluation of congenital hypopituitarism
 ✓ #1 Hypoglycemia (GHD/ACTH def)
 ✓ Micro phallus (GHD/Gnldr def)
 ✓ Jaundice (GHD/thyroid deficiency)
 ✓ Growth failure
• Hormone testing
 Gonadotropin window of opportunity
 Newborn screen suffice for thyroid?
 Serum cortisol - @ 8am?
 GH stimulation - insulin, glucagon, arginine, clonidine
• Imaging: MRI
Hormone deficiency is treated by replacing the deficient hormones. The goals of treatment are to improve symptoms and to replace the deficient hormone or hormones at a level that is as close to physiologically correct as possible.

However, one rule of hormone replacement is that no one dose will suit every patient. Thus, the patient will need to be seen regularly after starting treatment to assess the effect. It often takes time and repeated dose changes to find the optimal dose for each patient.
Hormone replacement therapy

1. GHD: GH replacement therapy
2. Central hypothyroidism: Levothyroxine usually $\frac{1}{2}$ the dose needed to treat primary hypothyroidism; follow levels of fT4
3. Gonadotropin deficiency: replace sex steroids vs gonadotropins (estrogen and progesterone or testosterone) needed at puberty [not address fertility]
4. Central adrenal insufficiency: replacement of cortisol; lower dose compared to treatment of CAH 10-15 mg/m2/day; stress hormone therapy

If patients have multiple pituitary hormone deficiencies, cortisol should always be the first hormone replaced as medications like thyroid hormone or GH can increase the body’s need for cortisol.
Treatment

Treatment considerations

Adrenal replacement before thyroid

Adrenal replacement may unmask DI (treated with oral desmopressin 0.1-0.2 mg tablets)

Mineralocorticoid function?

SOD

Optical problems - generally not treatable

Vision, physical, and occupational therapies may be required
You have a 1 week old boy in your office for evaluation. Parents tell you that the infant is jittery, irritable, and jaundiced. You note that the penis looks a bit small. Of the following, which is the most likely physical abnormality you will find on examination?

A. Bilateral ear tags
B. Cleft palate
C. Club feet
D. Polydactyly
You are evaluating a patient in clinic and notice the abnormality pictured. Which of the following is most likely to be affected?

A. Growth hormone levels
B. Aldosterone levels
C. Catecholamine levels
D. Insulin levels
You are on call in the PICU and following a very sick patient admitted with meningococcal meningitis. He has not had any urine output in the last 8 hours despite fluid administration. You order a BMP and his Na is 125. What is the most likely cause of the hyponatremia in this patient?

A. Diabetes insipidus
B. Psychogenic polydipsia
C. Inappropriate fluid administration
D. SIADH
Questions?